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Abstract 

The kinetics of thermogravimetric decomposition reactions are often difficult to model 
explicitly, because model parameters can depend on process conditions in an ill-defined way. 
Implicit kinetic models, such as those based on neural nets, often require extensive data and are 
not usually suitable for extrapolation of experimental data. In this paper it is shown that by 
combining explicit phenomenologieal models with artificial neural nets, more accurate 
modelling and extrapolation of these types of processes can be achieved. 
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1. Introduction 

Numerous mathematical methods have been proposed for the determination of the 
kinetics of solid state reactions from isothermal or non-isothermal thermogravimetric 
analyses. These methods are typically based on the use of a general rate equation of the 
form 

dot/dt = k f  (et) = ko e-  ~/Rr f (ot) (1) 

or in terms of temperature 

d~t/dT = k f  (~)/fl = koe-E/RT f (oO/fl (2) 

where at denotes some measure of the mass or concentration of the solid at time t, fl the 
rate of heating (fl = dT/dt)  and k a rate constant. This rate constant k is typically related 
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to the temperature via an Arrhenius function k = ko e-E/RT, with a pre-exponential 
factor k o and an activation energy E. 

Eqs. (1) and (2) can subsequently be used in either a differential or an integral form 
(Eqs. (3) and (4) to describe the mechanism and kinetics of reactions 

g(o 0 = kt  = koe-E/RTt  (3) 

g(at) = k o R T 2 / f l E [ 1  - 2 R T / E ] e - r ' / s r t  (4) 

This is usually accomplished by plotting the logarithms of either of these equations 
(Eqs. (1) or (3), or in terms of temperature, Eqs. (2) or (4)) in order to evaluate the kinetic 
parameters k, k o and E. The mechanism of the reaction is indicated by the functional 
form of ~, i.e. f(ct) or its integral g(~). 

Unforturnately these methods are often prone to significant shortcomings, in that by 
plotting the differential or integral forms f(0t) or g(~t) against the reciprocal temperature 
1/T, the functional forms are linearised to such an extent that the evaluation of 
a particular reaction mechanism become seriously compromised. 

Some strategies have been suggested [1] to overcome these problems by determining 
analytical curves for all possible forms of f(~) and g(0t) and comparing them with the 
experimental data. This approach can constitute a very elaborate exercise, apart from 
difficulties in obtaining sufficient experimental data for such a comprehensive analysis. 
Even when it is possible to determine the kinetics and mechanism of a solid state 
reaction without undue difficulty [1], these techniques do not lend themselves to 
convenient analysis of the multiple or complicated reactions often found in industry. 

Hashimoto et al. [2], for example, showed that the kinetics of the thermal regen- 
eration of activated carbon loaded with p-nitrophenol and a surface-active agent 
depended on multiple first-order reactions, each with a different activation energy and 
frequency factor. In complex multi-mechanism reactions, where mechanisms are 
superimposed, it is difficult to distinguish between these individual mechanisms [3]. 
These processes can be modelled by techniques such as multiple adaptive regression 
splines (MARS) [4] or artificial neural nets, which do not require explicit specification 
of a process model. Unfortunately these implicit methods often require extensive data 
to construct an accurate model of the process and are typically not suitable for 
extrapolation. 

In this paper a hybrid approach to the modelling of the kinetics of thermal de- 
composition processes is discussed. The method is based on the use of simple back- 
propagation neural nets in conjunction with available fundamental knowledge of the 
reaction kinetics. As a consequence the technique requires relatively few data and is 
capable of significantly, better extrapolation of the experimental data. 

2. Connectionist systems 

A number of books and a considerable volume of literature on artificial neural 
networks have appeared in recent years and only a very brief overview is provided in 
this paper [5-7]. 

Connectionist systems or artificial neural nets consist of a large number of funda- 
mentally primitive computational elements connected to each other on a massive scale. 
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These computational elements are usually arranged in a layered structure which 
consists of an input and an output layer, and also possibly one or more hidden layers, as 
shown in Fig. 1. Unlike input and output layers, hidden layers are not connected to the 
information environment in which the net is operating. In feedforward nets, such as 
those used in this investigation, information is passed from the input layer to successive 
hidden layers (if present) and the output layer in the net. During the process the 
computational elements or nodes in the layers of the net transform the weighted sums 
of all their inputs (the potentials of the computational elements) by means of transfer 
functions which typically map the potentials to smaller domains than that of the inputs, 
as indicated in Fig. 2 

zi(t + 1) = ~ ) [ ~ , j w i j z j ( t  ) - -  ~)i] (5) 

where zi(t) is the output of the ith process node at time t (or the tth iteration), w~j is the 
weight or connection between nodes i and j, and ®~ is the bias of the ith node. 

The form of the transfer function q~ may vary, but it could be a linear, step or 
sigmoidal transfer function, among others, with a domain typically much smaller than 
that of the potential, i.e. the sum of the weighted inputs, of the process unit. 

The weights which characterise the connections between process elements can be 
modified by various suitable training algorithms [8] 

Wij(t jr. 1) = Wij(t ) d- Awi j  (6) 

where 

w i j  = - ~ ( ~ l O w i j )  (7) 

and z is the learning rate of the net, and e an error criterion. These training algorithms 
are designed to minimise the mean square error between the desired and the actual 
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Fig. 1. General structure of a back-propagation neural net with one hidden layer. 
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Fig. 2. Sigmoidal process unit of a back-propagation neural net. 

output of the net [6] 

,~ = ~ ~ ( d j  -- Zj) 2 (8) 

where d i is the desired output of the net and zj the actual output. 
By presenting a neural net with a representative range of data exemplifying a func- 

tional relationship, the net is thus able to form a generalised internal representation of 
this functional relationship. The trained net can consequently be used to predict 
mapped output from previously unseen inputs, regardless of the complexity of the 
mapping: 

Artificial neural nets have been applied with notable success to, among others, the 
modelling of mineral and chemical processes, process control, fault diagnosis, as well as 
to classification problems of various types [9-11"1. 

3. Modellingmethodology 

The modelling methodology is similar to the approaches followed by Psichogios and 
Ungar [12] and Reuter and Bernhard I-31. Consider the dynamic system represented by 
Eqs. (9) and (10) 

dx /d t  = O(x ,  u,p) (9) 

p = ~(x, u) (10) 

where x denotes the state vector of the system, u the control and p a vector of process 
parameters. The functional relationship between p and the state and control variables 
x and u is often difficult to derive from first principles, especially with regard to complex 
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processes such as the kinetics of thermal decomposition. Despite the difficulty in 
relating the process parameters to the state and control variables, knowledge of these 
parameters under a wide range of operating conditions is crucial to the efficient reactor 
design and operation. The neural net can either be used to represent the functional 
relationship dp(x, u,p) or else available knowledge of this relationship can be retained 
by using a neural net to represent p = O(x,u). This approach allows the modelling of 
complex processes without having to identify constituent or multiple reaction mechan- 
isms. The technique is discussed in more detail by means of examples below. 

3.1. Example 1: Decomposition of phenol on activated carbon [13] 

In the first example, the use of a neural net to represent the non-isothermal 
decomposition of phenol adsorbed on activated carbon is illustrated. This process has 
previously been modelled by van Deventer and Camby [13] by means of a two-stage 
kinetic model. The phenol (A) first decomposes irreversibly into a non-volatile frag- 
ment (B) and a volatile fragment (C). This decompositon step can be written as 

A(ads)--. bB(ads) + cC(ads) (11) 

C (ads) ~ C (g) (12) 

The total amount of phenol (q) adsorbed at any time is q = qA + qn, provided that the 
second reaction (Eq. (12)) is rapid compared to the first (Eq. (11)). 

The decomposition reaction is assumed to be first order 

- d(q - q°)/dt = kA( q - qO) (13) 

0 with qn being the initial mass of adsorbed intermediate product per unit mass of initial 
virgin carbon. The reaction constant k A is, moreover, assumed to follow an Arrhenius 
relationship, i.e. 

k A = k ° exp ( - EA/R o T) (14) 

At a higher temperature, the intermediate product (B) decomposes into cracked 
products C' that desorb easily, as well as an adsorbed char residue (R) 

b B (ads) ~ r R (ads) + c'C'(ads) (15) 

C'(ads) ~ C'(g) (16) 

The kinetics of the decomposition of (B) can similarly be expressed as 

- d ( q  - q ~ ) / d t  = k s ( q  - q ~ )  (17) 

with k n also following an Arrhenius relationship of the form 

k a = k ° exp ( - EB/R o T) (18) 

Instead of further refinement of the model as discussed by van Deventer and Camby 
[ 13], a neural net can be used to model the kinetics of the decomposition process by 
considering the ratio of the total mass of adsorbate per unit mass of initial virgin carbon 
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to the initial mass of adsorbed phenol per unit mass of initial virgin carbon (q/qO) as 
a function of the initial loading (qO) and the time t, i.e. q/q° A = fNN(q °, t). 

3.1.1. Neural net model of decomposition kinetics 
By using a simple back-propagation neural net, the relationship q/qO = f(qO, T) 

could be represented without the need for explicit knowledge of the function fNN" The 
net consisted of an input layer with two nodes (one for each input variable), a hidden 
layer with three sigmoidal nodes and a single node sigmoidal output layer (for the 
response variable (q/qO), similar to the net shown in Fig. 1. 

The experimental data were divided into a training and a test set, each comprised of 
exemplars of the form {qO, t lq/qOA }. The net was subsequently trained by repeatedly 
presenting it with the data in the training set, until the root-mean-square (RMS) error 
between the predicted q/q° A values and the experimental q/qO values was minimised, as 
shown in Fig. 3 and explained previously. 

After convergence, the performance of the net was evaluated against the exemplars in 
the test set to ensure that the net had generalised the underlying trends in the data 
(instead of learning the data themselves). The results for activated carbon with an initial 
loading of 82.5 mg (g phenol)- 1 are shown in Fig. 4. These results are typical for other 
phenol loadings as well, and as can be seen from this figure, the net was able to form an 
accurate representation of the kinetics of the process, with an average absolute error of 
less than 0.3%. 

3.2. Example 2: Calcination of limestone 

The calcination of limestone has been studied extensively, due to its importance in 
industrial processes and pollution control. The reaction (Eq. (19)) involves the en- 
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Fig. 3. Root mean square (RMS) error in output of neural net during training (Example 1). 
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30 

dothermic decomposition of solid calcium carbonate into solid calcium oxide and 
carbon dioxide gas [14] 

CaCO3 (s) --* CaO(s) + CO2 (g) (19) 

The calcination reaction depends on the reaction temperature, the size, shape and pore 
structure of the calcium carbonate particles, the background pressure of the carbon 
dioxide, the presence of impurities in the calcium carbonate, etc. [15]. 

The process kinetics are represented by 

- d[CaCO3]/dt = f ( [ C a C O 3 ]  , T, d) (20) 

where [CaCOa] denotes the concentration of the calcium carbonate at time t, T the 
temperature at which the reaction is taking place, and d the average particle size of the 
calcium carbonate. The functional relationship between the rate of decomposition of 
the calcium carbonate and the process conditions was modelled by a sigmoidal 
back-propagation neural net with one hidden layer. The input layer consisted of three 
nodes (one each for the calcium carbonate concentration [CaCOa] , the temperature 
T and the average particle size d, while the output layer of the net had a single node 
corresponding to the decomposition rate of the solid ( - d [ C a C O  3 ]/dt). 

The training and test sets of exemplars were constructed from laboratory data 
obtained in experiments with six different particle sizes, namely 3.5-4.0, 4.0-5.6, 
5.6-6.7, 6.7-11.2, 11.2-16.0 and 16.0-25.0mm, at three different temperatures, 1000, 
1100 and 1200°C. The training set consisted of 400 exemplars, while the test set 
consisted of 100 exemplars. The net converged rapidly (within 120 000-15 000 iter- 
ations, as shown by the solid lines in Fig. 5) and predicted the test data with an average 
absolute error of less than 8%, as shown by the solid lines in Fig. 6. 
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Fig. 6. Neural net (NN) and hybrid neural net (HNN) modelling of the calcination of calcium carbonate 
(figures in square brackets indicate average absolute percentage errors). 

Instead of  using a neural net to model  the calcination process in toto, the net can be 
used to model  the dependency of  the kinetics on the calcium carbonate  concentra t ion 
and particle size, while an Arrhenius relationship can be used to model  the effect of  
temperature,  that  is 

- d [ C a C O  3 ] /d t  = f sN( [CaCO3 ], d )¢-  n/R r (21 ) 
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The net had the same structure as those used previously, except that it had an input 
layer with two nodes (one each for the calcium carbonate concentration [CaCO3] and 
the average particle size d). During training the net converged fairly rapidly (within 
15 000 iterations), as indicated by the broken lines in Fig. 5 and was capable of forming 
an accurate (average absolute error of less than 10%) internal representation of the 
relationship fsN([CaCO3 ], d), as shown by the broken lines in Fig. 6. 

3.3. Example 3: Kinetics of the thermal regeneration of spent 
activated carbon [I 6] 

Van Deventer and Camby studied the regeneration of activated carbon from a gold 
adsorption plant, as well as carbon loaded with phenol in a steam-nitrogen atmos- 
phere in a fluidised bed. They derived a kinetic model for the mass loss of the loaded 
carbon M, as a function of time t and temperature T. As before, this relationship can be 
modelled in full by a neural net, that is M = f ~ ( t ,  T). A simple back-propagation 
neural net with a hidden layer containing three sigmoidal process units was trained on 
experimental data representing the process at temperatures below 800°C. These results 
are shown as solid lines in Fig. 7. The net was subsequently used to extrapolate the 
experimental data at 900°C, the results of which are shown as dotted lines in Fig. 7. As 
can be seen from this figure, the net was not able to extrapolate the process kinetics at 
900°C very accurately (the average absolute error was 18.09%, compared to an average 
absolute error of 5.93% for the solid-line curves). 
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Fig. 7. Neural net (NN) model of the regeneration of activated carbon loaded with phenol. Broken lines 
indicate experimental data (EXP), solid lines indicate the prediction of the neural net (NN) in process regions 
represented by its training data base, and dotted lines (NNX) indicate prediction in process regions not 
represented by its training data base. Figures in square brackets denote average absolute percentage errors. 
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Fig. 8. Hybrid neural net (HNN) model of the regeneration of activated carbon loaded with phenol. Broken 
lines indicate experimental data (EXP), solid lines indicate the prediction of the hybrid neural net (HNN) in 
process regions represented by its training data base, and dotted lines indicate prediction of the net (HNNX) 
in process regions not represented by its training data base. Figures in square brackets denote average 
absolute percentage errors. 

A hybrid model was subsequently constructed. This model consisted of a simple net 
with one input node, a three-node sigmoidal hidden layer and a single output node, 
combined with an Arrhenius-type equation to model the effect of temperature. The net 
was trained to represent the relationship between the mass loss M and time t at 
a temperature of 500°C only, while the temperature was modelled explicitly. The results 
of this model a~e shown in Fig. 8. The net was able to predict the experimental data at 
500°C accurately (with an average absolute error of 4.10%). The ability of the net to 
predict the data at other temperatures was hampered somewhat by inaccuracies in the 
explicit temperature relationship, but it was nonetheless capable of good all-round 
performance, as shown in Fig. 8. The net could predict the data at 900°C with an 
average absolute error of less than 11.4% compared to the 18.09% of the previous 
neural net model. While the performance of the hybrid net should not deteriorate 
significantly at higher temperatures, that of the larger net M = fsN(t, T) can be 
expected to deteriorate dramatically. 

4. Conclusions 

The examples discussed in this paper merely serve as case studies to elucidate the use 
of neural nets to model the kinetics of decomposition and other similar processes. In 
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principle these techniques can be applied to numerous other types of mass transfer 
processes, as long as sufficient data are available to describe these phenomena. 
The sufficiency of the data depends on the complexity of the process, i.e. the dimen- 
sionality of the input space, as well as on the degree of interaction between the input 
x;ariables. 

The hybrid neural net method is a general approach which eliminates the need for the 
development of complicated fundamental models. An advantage of this approach is 
that the net already contains a partial model of the process, so that relatively few data 
are required to model the process parameters of the system. The hybrid modelling 
technique is based on the assumption that the partial model is reasonably accurate. If 
that is not the case, or if the partial model contains a large number of complex 
parameters, the hybrid net may not afford a significant advantage over the use of 
standard neural net methods. 
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